
Model 505 Flow Computer

Operation Manual

Application LM01

Single Tank Level Monitor for Analog Level Sensors

17 June 2017

Model 505 Flow Computer - Operation Manual

© Contrec Limited 2017

The instructions given herein cover the general description, installation, operation and maintenance of the subject equipment. Contrec Limited. reserves the right, without prior notice, to make engineering refinements that may not be reflected in this manual.

Should any questions arise which cannot be answered specifically by this manual, they should be directed to Contrec Limited for further detailed information and technical assistance.

Contrec Limited will not accept any liability for either direct or consequential damages resulting from the use or misapplication of the contents of this manual.

Part of the software embedded in this product is eCos - Embedded Configurable Operating System, a trademark of Red Hat. Portions created by Red Hat are Copyright © 1998, 1999, 2000 Red Hat, Inc. (http://www.redhat.com). All rights reserved

The software in this product was in part provided by Red Hat and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the author be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Contrec Limited

Riverside, Canal Road, Sowerby Bridge, West Yorkshire HX6 2AY UNITED KINGDOM Tel: +44 1422 829944 Fax: +44 1422 829945 Email: sales@contrec.co.uk

Website: www.contrec.co.uk

Contrec Systems Pty Ltd

5 Norfolk Avenue Ringwood, Melbourne 3134 AUSTRALIA Tel: +61 4 413 505 114 Email: info@contrec.com.au

Contrec - USA, LLC

916 Belcher Drive Pelham AL 35124 USA Tel: +1 (205) 685 3000 Fax: +1 (205) 685 3001 Email: contrec@contrec-usa.com

Publication No: 505-LM01-OM - 17 June 2017

The information in this safety notice is for the prevention of injury to personnel and damage to the instrument.

The manufacturer assumes no liability for injury or damage caused by misuse of the instrument or for modifications made to the instrument.

Qualified Personnel

The instrument must be installed, operated and serviced by persons who have been properly trained and authorised. Personnel must read and understand this manual prior to installation and operation of the instrument.

Static Hazard

The 500 series flow computer uses high speed CMOS circuitry which is sensitive to static damage. The user should observe accepted safety practices for handling electronic devices, especially during servicing. Once the unit is installed, grounded and interconnected, the chances of static damage are greatly reduced.

Voltage Hazard

Before connecting power to the instrument, ensure that the supply voltage for the AC or DC input is suitable. The AC voltage rating is as stated on the instrument rating plate. Personnel should take all due care to avoid electric shock. For safe operation it is essential to connect a mains safety earth to the A.C. power inlet. Do not operate at altitudes above 2000m.

Welding Hazard

Do not perform electric welding in close proximity to the instrument or its interconnecting cables. If welding in these areas must be performed, disconnect all cables from the instrument. Failure to do so may result in damage to the unit.

Moisture Hazard

To avoid electrical faults and corrosion of the instrument, do not allow moisture to remain in contact with the instrument.

Disconnection Device

When powered from a mains supply this unit requires the provision of a suitable mains isolation device to be accessible near to the installed instrument.

Contents

1	Introduction	
	Overview	1
	Calculations	2
	Displayed Information	
	Main Menu Variables	
	Communications	
	Retransmission & Control Outputs	
	Relay Outputs	
	Software Configuration	
	Limitations of Use	
	Approvals	
	Approvais	+
2	Specifications	
	Specification Table	7
3	Installation	
J	Panel Mounting	n
	Electrical Connection 1	
	Rear Panel Connections 1	
	Terminal Designations 10	
	Inputs	
	Analog Input Connections 1	
	Logic Input Connection 1	
	Outputs	
	4-20mA Output Connection 1	
	Logic Output Connection	
	Control Relays (Alarms)	
	RC Network for Interference Suppression 1	
	Communications	
	RS-232 Port	
	RS-485 Port	
	Earthing and Shielding	5
4	Operation	
	Normal Operation Mode	7
	Default Variable 1	
	Status LEDs	
	Front Panel Keys 1	
	y	
	Data Logs	
	Model Information 2	
	Alarms Menu	
	Operation of Alarms 22	2

5	Instrument Calibration												
	Introduction												 2:
	Calibration View Mode												 25
	Calibration Set Mode												 20
	Changing the Instrument Settings												 2
	Calibration Menu Tree												
	Instrument Settings												
	Units of Measurement												
	Parameters												
	Inputs												
	Outputs												
	Alarms												
	Communications												
	Time Settings and Data Logging												
	General Setup Parameters												
	Test Menu												
	System Messages												
	Error Messages												
	Warning Messages												
	Alarm Messages												
6	Communications												
	Overview												
	Hardware Interconnection												
	Protocols												 49
	Modbus RTU Protocol												 49
	List of Data Registers												
	Printer Protocol												 5.5
	Types of Printouts												
	Printer Data Control												 58
\mathbf{A}	opendix A Model Numbers												
	Product Codes												 6
	Custom Version Codes												
	Application Information Code												
$\mathbf{A}_{]}$	opendix B Units of Measurement												
	Available Units of Measurement									-			 64
In	dex												6

List of Figures

1	Typical Application Diagram
2	Rear Panel Connections
3	Externally Powered Current Loop
4	Internally Powered Current Loop
5	Logic Input Connection Diagram
6	Output 4-20mA Connection Diagram
7	Output Logic Connection Diagram
8	Relay Connection Diagram
9	RS-485 Interface Connections
10	Logged Data Display Methods 20
11	Calibration Menu Tree Sheet 1
12	Calibration Menu Tree Sheet 2
13	RS-232 Cable Connections to a Computer 48
14	RS-485 Connections 48

505 LM01 - 17 June 2017 vii

viii 505 LM01 - 17 June 2017

Chapter 1 Introduction

Features

- 20 point level to volume strapping table
- Level control output
- Accepts level and pressure (product head) sensors
- Density correction available for pressure level sensors
- Provides volume to mass conversion via density value
- Freely assignable alarms for high or low levels
- Selection of second language and user tags
- RTC logging with up to 100 entries at user-specified scheduled times
- 4-20mA retransmission
- RS-232 and RS-485 (optional) serial ports
- Modbus RTU, Printer and other serial port protocols
- Front panel adjustment of 8-24 V DC output voltage
- Backlit display

Overview

The 505 LM01 application monitors and measures the level of product in a single tank. The instrument uses the 4-20mA signal from a wide range of level sensors, including pressure transmitters, ultrasonic sensors and capacitance probes.

The level monitor provides a 20 point strapping table and product density for level to volume and volume to mass conversions. The instrument can display Volume, Percentage Full and Mass as well as Level. Relay alarms are freely assignable as high or low alarms and an open collector output is provided for programmable level control.

A sub-menu gives full details of alarm status and can offer direct access to change the alarm setpoints. The instrument also has density correction available for pressure level sensors to cater for a deviation in product density.

Calculations

The following equations identify the derivation of some of the displayed variables. If your interest is more in the operation of the instrument, you can skip this section and allow the instrument to take care of the calculations.

Calculations are based on the analog input signal representing the product level in the tank.

 $level = (Lmax-Lmin) \times A + Lmin$ $volume = (Vmax - Vmin) \times A^* + Vmin$ $mass = volume \times density$

where:

A = normalised input signal with density correction.

 $A^* = A$ for linear tanks.

 $A^* = f(A)$ for non-linear tanks. f(A) = level to volume normalised strapping table.

Displayed Information

The front panel display shows the current values of the input variables and the results of the calculations.

The instrument can be supplied with a real-time clock for data logging of up to 100 entries of the variables as displayed on the main menu.

Main Menu Variables

Main Menu Variables	Default Units	Variable Type
Product Volume	m ³	Rate
Product Level	m	Rate
Volume Full %	%	Rate
Product Mass	kg	Rate

Refer to **Available Units of Measurement** on page 64 for the list of available units.

Communications

There are two communication ports available as follows:

- RS-232 port
- RS-485 port

The ports can be used for remote data reading, printouts and for initial application loading of the instrument.

Retransmission & Control Outputs

The instrument can re-transmit any main menu variable. The digital output can be used as logic levels for control outputs. If the instrument has the advanced option, it outputs rates as a 4-20mA signal.

Relay Outputs

The relay alarms can be assigned to any of the main menu variables of a rate type. The alarms can be fully configured including hysteresis. Two relays are standard.

Software Configuration

The instrument can be further tailored to suit specific application needs including units of measurement, custom tags, second language or access levels. A distributor can configure these requirements before delivery.

Instrument parameters including units of measurement can be programmed in the field, according to the user access levels assigned to parameters by the distributor.

All set-up parameters and logged data are stored in non-volatile memory with at least 30 years retention.

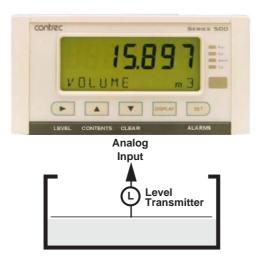


Figure 1 Typical Application Diagram

Limitations of Use

Density Correction for Pressure Level Sensors

Density correction has been provided for use with pressure level sensors to cater for a deviation in the product density. This correction is only used in the calculations when the minimum and maximum points for the level input have been programmed in a conventional manner. That is, the level corresponding to the 20mA point is greater than the level for the 4mA point.

Approvals

This instrument conforms to the EMC-Directive of the Council of European Communities 2014/30/EU, the LVD safety directive 2014/35/EU and the following standards:

- *EN61326:2013* Electrical equipment for measurement, control and laboratory use EMC requirements: Industrial Environment.
- *EN61010:2010* Safety requirements for electrical equipment for measurement, control, and laboratory use.

In order to comply with these standards, the wiring instructions in **Chapter 3 - Installation** must be followed.

FCC Declaration

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, might cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. Contrec Ltd is not responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device might not cause harmful interference, and (2) this device must accept any interference received, including interference that might cause undesired operation.

505 LM01 - 17 June 2017 5

Chapter 2 Specifications

Specification Table

Operating Environment

Temperature 0°C to +60°C (conformal coating)

+5°C to +40°C (no coating)

Humidity 0 to 95% non condensing (conformal

coating)

5% to 85% non condensing (no coating)

Power Supply 95-135 V AC or 190-260 V AC

or 12-28 V DC

Consumption 6W (typical)

Protection Sealed to IP65 (Nema 4X) when panel

mounted

Dimensions 147mm (5.8") width (panel option) 74mm (2.9") height

167mm (6.6") depth

Display

Type Backlit LCD with 7-digit numeric display

and 11-character alphanumeric display

 Digits
 15.5mm (0.6") high

 Characters
 6mm (0.24") high

LCD Backup Last data visible for 15min after power

down

Update Rate 0.3 second

Non-volatile Memory

Retention > 30 years

Data Stored Setup, Totals and Logs

Approvals

Enclosure IECEx, ATEX and CSA approved

enclosures available for hazardous areas

Real Time Clock (Optional)

Battery Type 3 volts Lithium button cell (CR2032)

Battery Life 5 years (typical)

4-20mA Input

Overcurrent 100 mA absolute maximum rating

Impedance 250 Ohms (to common signal ground)

Accuracy 0.1% typical full scale (20°C) 0.2% (full temperature range)

Non-linearity Up to 20 correction points (flow inputs)

Remote Key Input

Signal Type CMOS, TTL, open collector, reed switch

Configuration One input set as one of front five keys

Relay Output

No. of Outputs 2 relays

Voltage 250 volts AC, 30 volts DC maximum

Current 3A maximum

Communication Ports

Ports RS-232 port

RS-485 port

Baud Rate 2400 to 19200 baud **Parity** Odd, even or none

Stop Bits 1 or 2

Data Bits 8

Protocols Modbus RTU, Printer*

Transducer Supply

Voltage 8 to 24 volts DC, programmable

Current 70mA @ 24V, 120mA @ 12V maximum

Protection Power limited output

Pulse/Digital Output

Signal Type Open collector, non-isolated
Switching 200 mA, 30 volts DC maximum

Saturation 0.8 volts maximum

4-20mA Output (Optional)

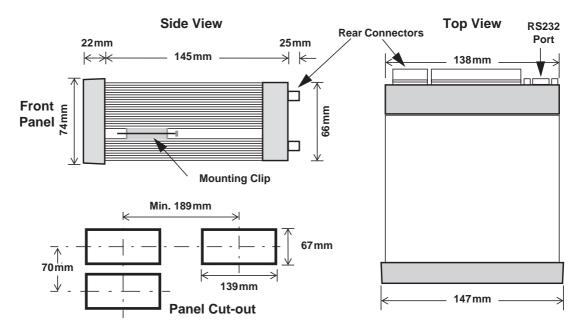
Supply 24 volts DC internal, non-isolated

Resolution 0.05% full scale

Accuracy 0.05% full scale (20°C)

0.1% (full temperature range, typical)

Important: Specifications are subject to change without notice. Printer protocol is available only if RTC option is installed.


Chapter 3 Installation

Panel Mounting

The instrument should be located in an area with a clean, dry atmosphere that is also relatively free of shock and vibration.

The standard mounting procedure is panel mounting in a cutout that is 139 mm wide by 67 mm high. Two side clips secure the unit into the panel.

Figure 2 shows the panel mounting requirements for the 500 Series Instrument.

500 Series Instrument Panel Mounting

505 LM01 - 17 June 2017 9

Electrical Connection

Rear Panel Connections

Figure 2 shows the connections on the rear panel of the instrument.

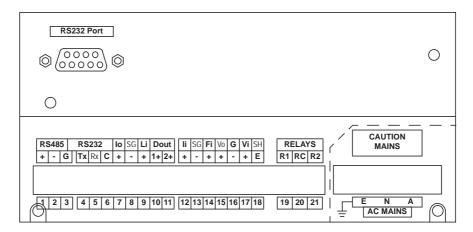


Figure 2 Rear Panel Connections

Terminal Designations

Terminal Label			Designation	Comment
1 RS485 +		+	RS485 (+)	
		-	RS485 (-)	
3		G	Comms ground	
4	1 1		RS232 data out	0 00000
5			RS232 data in	Same RS232 port as DB9 connector
6		С	CTS (Clear to send)	
7	lo	+	4-20mA output	Advanced option
8	SG	-	Signal Ground 0V	
9	Li	+	Logic input	
10	D OUT	1+	Open collector o/p 1	Control output
11	1 2+		Open collector o/p 2	Not used
12	12 li +		4-20mA input	Level input
13	SG	-	Signal Ground 0V	
14	Fi	+	Frequency input	Not used
15	15 Vo +		8-24 volts DC output	70mA power limited
16	G	-	DC Ground	
17	Vi	+	DC power input	DC power in 12-28V
18	SH	Е	Shield terminal	
19		R1	Relay 1	
20	20 RELAYS RC		Relay Common	
21 R2		R2	Relay 2	
Е			Mains ground	10 : 05 1051/
N	AC MAINS	Ν	Mains neutral	AC power in 95-135V or 190-260V
A WAINS A		Α	Mains active	100 200 V
RS232 port			9-pin serial port	

Inputs

Analog Input Connections

The analog input (Ii) can accept current signals from 4 to 20mA.

CAUTION

Applying levels of input current above the absolute maximum rating (100mA) may cause permanent damage to the input circuitry.

4-20mA Inputs

For an externally powered current loop, connect the transmitter to the input terminals as shown in Figure 3.

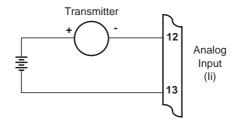


Figure 3 Externally Powered Current Loop

Connect internally powered current loop as shown in Figure 4.

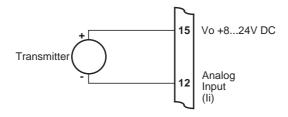


Figure 4 Internally Powered Current Loop

Logic Input Connection

These input(s) are designed to be connected to open collector signals or a voltage free contact switch. A minimum activation time of 300ms is required to guarantee reading of an input.

Remote Key Input

A remote push-button key can be connected to the Logic Input as shown below. Refer to **REMOTE KEY** on page 35 to define the function of the key.

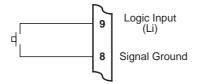


Figure 5 Logic Input Connection Diagram

Outputs

The basic instrument has two digital logic outputs (in this application only DOUT1 is used). The advanced option also provides a 4-20mA output port.

4-20mA Output Connection

Figure 6 shows the connections for a 4-20mA output.

Maximum Load Resistance = 900 ohms

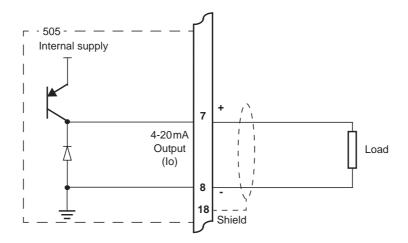


Figure 6 Output 4-20mA Connection Diagram

Logic Output Connection

Figure 7 shows a connection example for a logic control output. Output channel 1 uses terminals 10 (+) and 8 (-). Output channel 2 uses terminals 11 (+) and 8 (-).

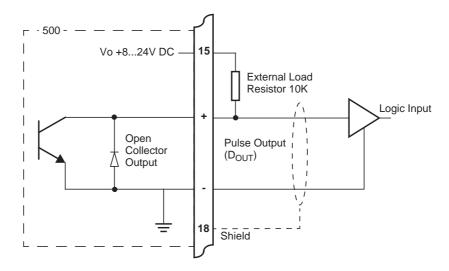


Figure 7 Output Logic Connection Diagram

Control Relays (Alarms)

The standard instrument has two alarm relays, which can be used to drive external devices such as external relays, LEDs, and audible alarms. The operation of alarm relay(s) can be set to various modes as described in **Alarms** on page 36.

There is also an equipment failure alarm option. This alarm can have normally closed (open) contacts which open (close) when the instrument displays any error message as listed in **Error Messages** on page 45, or if there is a loss of power to the instrument.

The output characteristics of the relays are:

Maximum Voltage 30 volts DC or 250 volts AC

Maximum Current 3A

Note: Solid state relays use AC voltage only.

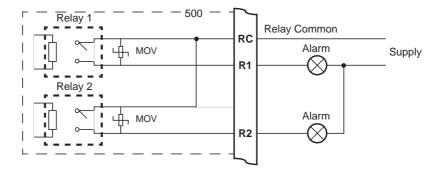


Figure 8 Relay Connection Diagram

RC Network for Interference Suppression

When driving highly inductive loads with the relay outputs, it is recommended to use RC suppression networks (often called "Snubbers") for the following reasons:

- To limit the amount of electrical noise caused by arcing across the contacts, which may, in extreme cases, cause the microprocessor to act erratically.
- To protect the relay contacts against premature wear through pitting.

RC suppression networks consist of a capacitor and series resistor and are commonly available in the electrical industry. The values of R and C are dependent entirely on the load. However, if the user is unsure of the type of snubber to use, values of $0.25\,\mu F$ and $100\,\Omega$ will usually suffice. Note that only mains-approved RC suppression networks should be used.

The basic principle of the operation is that the capacitor prevents a series of sparks arcing across the contact as the contact breaks. The series resistor limits the current through the contact when the contact first makes.

Communications

The communication protocols are described in **Communications** on page 47.

RS-232 Port

The standard RS-232 port uses terminals 4, 5 and 6 on the rear panel.

The extra RS-232 port 9-pin DB female connector has the following pinout:

Pin 1	Not used
Pin 2	Transmit (TxD)
Pin 3	Receive (RxD)
Pin 4	Not used
Pin 5	Ground
Pin 6	Not used
Pin 7	Handshake line (CTS)
Pin 8	RTS Out
Pin 9	Not used

Note: The instrument does not require a null-modem cable for connection to a personal computer. Refer to **Hardware Interconnection** on page 47 for cable termination requirements.

RS-485 Port

Up to 32 units can be connected to a common RS-485 bus. Each unit has a unique address that the host computer uses to identify each instrument.

Figure 9 shows the connection of several instruments to a computer using the RS-485 port.

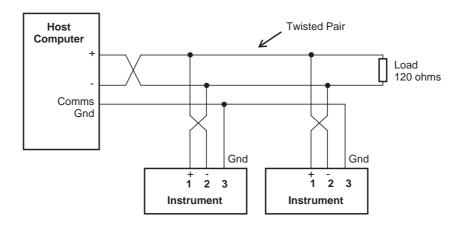


Figure 9 RS-485 Interface Connections

Earthing and Shielding

It is a good practice to use shielded cable for all signal connections to the instrument. Care must be taken to separate signal cables from power cables to minimize interference.

Overall earth should be connected at the instrument end only. This connection should be as short as possible and connected to the earthing point on the rear terminal at pin 18.

Chapter 4 Operation

Normal Operation Mode

In normal operation mode, you press the buttons on the front panel to display the values recorded and calculated by the instrument. There are four categories of information that the instrument can display:

- Level variables
- Contents variables
- Alarm setpoints
- Instrument settings

Default Variable

In some applications, a particular variable is of more interest than others, and for this reason a default variable can be assigned during instrument calibration. The default is used in the following way:

• The default variable determines what the display returns to if the display timeout option is enabled and no buttons are pressed for the selected period (usually 30 seconds). It also determines what is displayed on power up.

Status LEDs

The status LEDs illuminate to show the following conditions:

Run
Set
Alarm
Cal

Run An instrument operation is in progress.Set The instrument is in Calibrate Set mode.

Alarm The instrument has an error, as indicated on the display panel.

Cal The instrument is in Calibrate View mode.

Front Panel Keys

For most actions with the front panel keys, you can hold a key to scroll through the values or options, instead of repeatedly pressing the key.

LEVEL

Press the **LEVEL** key to display the current tank level. If there is more than one level variable, press or hold the **LEVEL** key to display the other level variables in turn.

CONTENTS

Press the **CONTENTS** key to display the current tank contents. When a contents variable is displayed, press or hold the **CONTENTS** key to display the other contents variables in turn.

CLEAR

Use the **CLEAR** key to clear and acknowledge relay alarms or to initiate a printout if the printer option has been selected. The printout is activated with a single press and gives two beeps while the Clear Alarms Key parameter in calibration can be enabled or disabled during instrument calibration and functions as follows:

- DISABLE The user cannot clear or acknowledge any relay alarms.
- ENABLE Holding the **CLEAR** key for two seconds will acknowledge and clear all active relays, while individual alarm relays can be cleared in the Alarms Menu with a single press of the clear key.

DISPLAY

Press the DISPLAY key to step or scroll through the main menu items.

ALARMS

Press the ALARMS key, while viewing any main menu variable, to enter the alarms menu. For full details see **Alarms Menu** on page 21.

Main Menu Items

The main menu in this instrument consists of the following items. The DISPLAY key is used to step or scroll through the list.

DISPLAY	Description	Options
VOLUME	Product volume	Press the ALARMS key to enter the Alarms menu
LEVEL	Product level	Press the ALARMS key to enter the Alarms menu
% FULL	Volume full percentage	Press the ALARMS key to enter the Alarms menu
MRSS	Product mass	Press the ALARMS key to enter the Alarms menu
REPORT PRINT	Only shown if print option is selected	Hold the SET key to print log report as defined in the TM/LOG section of calibration.
LOGGED DATA	Only shown if real-time clock option is installed	Hold the SET key to display data logs as described in Data Logs on page 19.
MOJEL INFO		Hold the SET key to display the Model information as described in Model Information on page 21.
CAL MENU		Hold the SET key to enter Calibration View mode as described in Calibration View Mode on page 25.

Data Logs

The instrument will log the main-menu variables if real-time clock option is installed. The logs are at fixed intervals which can be programmed to a combination of hours, days, weeks, months and years. The instrument can store a total of 100 log entries.

If the number of log entries exceeds the programmed number for a particular time interval, the oldest log entry is overwritten by the newest one for that time interval.

The log entries are recorded at the following times:

HOUR 00 minutes each hour

DAY 00 hours and 00 minutes each day

WEEK 00 hours and 00 minutes each Monday

MONTH 00 hours and 00 minutes on the first day of the month YEAR 00 hours and 00 minutes on the first day of the year.

View Data Logs

Use the following procedure to view the data that has been logged by the instrument:

- 1. Press the DISPLAY key to scroll through the menu to the LOGGET INTH prompt.
- **2.** Hold the **SET** key.

The system displays the hourly log. The timebase and number of the log are shown, for example LH-001.

3. While holding the DISPLAY key use the CLEAR key to print the data for the displayed log if the printer option has been selected.

The following example shows the hourly log number 006 at 15:00 (3:00 pm) on 16 January 2016. The day and month alternate with the year in the bottom right hand corner.

Press SET at any time to exit from the Data Logs LH-nnn LD-nnn LW-nnn LM-nnn LY-nnn Press ▲ ▼ to select the log LH-002 LD-002 LW-002 LY-002 LM-002 number HOUR DAY WEEK MONTH YEAR LH-001 LD-001 LW-001 LM-001 LY-001 Press **t** to select the time base

Variable 2 Variable 1

Error code

Figure 10 shows how to display the logged data.

Hold **DISPLAY** to show the values for a log entry

Figure 10 Logged Data Display Methods

Hold **DISPLAY** and press **b** to

display the main menu variables

Model Information

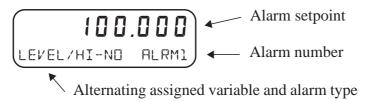
The model information items display the hardware, software and application versions of the instrument. This information is mainly for service personnel.

DISPLAY	Description
1-15- 505 MODEL	The hardware model code. Refer to Product Codes on page 61 for more information.
- L LMØ1 INPUT	The Application number and the assignment of the inputs. Refer to Application Information Code on page 62 for more information.
0 10 1.002 LM01 VERS	The version of software loaded into the instrument.
CUSTOM VERS	The Customer version code for this installation. Refer to Custom Version Codes on page 62 for more information.
123456 ABC123 5/N	The instrument serial number and unit tag. The serial number is on the top line and unit tag is on the bottom left. Both items are entered when the instrument application software is initially loaded. If the unit tag is not used the default tag, UNIT, will be used.
1 6 - 15 EDITED 27/08 2016	The time and date when the calibration of the instrument was last edited. The format of the time and date is the same as for the data logs. This example shows 16:15 (4:15pm) on the 27th August 2016.
	This function is available only if the instrument has the real time clock option.

Press SET at any time to exit from the Model information.

Alarms Menu

The alarms menu allows information about individual alarms to be viewed. If multiple alarms are active at one time it can allow the alarms to be individually acknowledged.

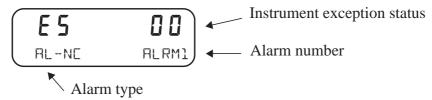

On entering the alarms menu with the ALARMS key the Cal indicator will illuminate and the first item, ALARM 1, will be displayed.

DISPLAY

Press the DISPLAY key to step or scroll around through the other alarms in the order of the alarm number. The instrument will exit the alarms menu whenever the LEVEL or CONTENTS keys are pressed or a timeout of 30 seconds, with no key presses, expires.

505 LM01 - 17 June 2017 21

An alarm menu item consists of the alarm number, type, assignment and setpoint as shown in the following example:


The **Alarm** led indicates the status of the alarm being viewed.

Led flashing = Alarm ACTIVE

Led solid = Alarm ACKNOWLEDGED

Led off = Alarm IDLE.

If the alarm being viewed has been assigned as an Equipment Alarm (AL-NC) it will be displayed in the following form. An Equipment Alarm relay can not be cleared and pressing the **CLEAR** key will have no effect.

The exception status code is the same as that used for communications. For a full list see **Instrument Exception Status** on page 53.

Changing Alarm Setpoints

An alarm setpoint can only be edited if the Direct Edit Access parameter was enabled during instrument calibration. Hold the SET key, the display of the setpoint will change from view mode to edit mode after two seconds. Once in edit mode the Set indicator will illuminate and the setpoint values are changed in exactly the same way as in calibration set mode. Press the SET key again to exit edit mode and return to the alarm item.

Operation of Alarms

The alarms can be freely assigned to any of the main menu variables as high or low alarms and can also be assigned to be an equipment alarm.

When a high or low alarm condition is detected the relay will activate, the **Alarm** led will flash and the message for that alarm will be scrolled across the display. The alarm will remain active until the alarm condition is no longer true at which point it is automatically cleared and the relay will deactivate, the led will turn off and the message will stop being displayed.

When Clear Alarms Key is enabled the alarm can be acknowledged and the relay cleared from the main menu by pressing the **CLEAR** key for two seconds. This will acknowledge all active alarms, the instrument will sound three beeps, the relays will be deactivated, the **Alarm** led will go from a flashing to solid state and the relevant alarm message will continue to scroll. When the alarm condition is no longer present the led will turn off, the message will stop being displayed and the alarm will be re-armed to activate when the condition is detected again.

If there are multiple alarms present at the same time only the highest priority alarm message will be displayed in the main menu (relays operate regardless of priority). The alarms menu can be used to view the status of all alarms and acknowledge them individually with a short press of the CLEAR key (or, like above, acknowledge all active alarms by holding the CLEAR key for two seconds). Any acknowledged alarm takes a lower priority than a non-acknowledged alarm. Hence the priority list of alarms on this instrument is as follows:

Alarm 1 Active Highest priority

Alarm 2 Active Alarm led flashing, Relay activated

Alarm 1 Acknowledged Alarm led solid, Relay deactivated

Alarm 2 Acknowledged Lowest priority

The key indication that the alarm being scrolled on the display is acknowledged or not is the status of the **Alarm** led.

505 LM01 - 17 June 2017 23

Chapter 5 Instrument Calibration

Introduction

You can view or change the settings of the instrument according to the access level for each parameter as set by the manufacturer. There are four levels of access to the parameters as follows:

- Not visible you cannot display or edit the parameter.
- **Display Only** you can display the parameter, but you cannot change the setting.
- **Programmable** you can change the setting of the parameter in Calibration Set mode.
- **Password protected** you can change the setting of the parameter in Calibration Set mode only if you enter the correct password.

Note: When you enter Calibration Set mode, the instrument requests you to enter a password. Any value will allow to change the settings of the "programmable" parameters, but the correct password must be entered to change the password-protected parameters.

Calibration View Mode

Use the following procedure to view the calibration settings of the instrument:

- 1. Press DISPLAY to scroll to the EAL MENU prompt.
- 2. Hold the SET key.

The instrument beeps once, illuminates the **Cal** indicator and shows **LAL** on the display panel.

- Press to scroll through the flashing menu headings.
- Press SET to scroll through submenu items.
- Press DISPLAY to return to the main calibration menu.
- **3.** To exit from the Calibration View mode, press to scroll to the ENI option and press SET).

The instrument returns to Normal Operation mode.

505 LM01 - 17 June 2017 25

Calibration Set Mode

In Calibration Set mode, you can change the settings of the "programmable" parameters. You must enter the system password to change the setting of the "password-protected" parameters.

Use the following procedure to enter Calibration Set mode:

- 1. Press DISPLAY to scroll to the EAL MENLI prompt.
- 2. Hold the SET key.

The instrument beeps once, illuminates the **Cal** indicator and shows **CFL** on the display panel.

- 3. Press to select any flashing menu heading except ENI.
- **4.** Hold **SET**) for two seconds.

The instrument requests a password.

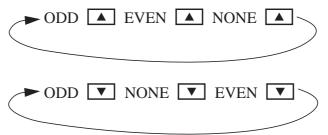
- 5. Press ▲ or ▼ to change the value of the current digit. To select the next digit, press ▶.
- **6.** Press **SET** to accept the password.
 - The instrument makes two beeps for a correct password entry and enables you to change the "programmable" and "password-protected" parameters.
 - The instrument makes one beep for an incorrect password entry and enables you to change only the "programmable" parameters.

The instrument illuminates both the Cal and Set indicators.

- **8.** Press SET to accept the currently displayed value and proceed to the next parameter. You can press DISPLAY to return to the main calibration menu.
- 9. To exit from Calibrate Set mode, press to scroll through the main calibration menu to ENI, then press SET. Otherwise, from any menu, you can press and hold SET for two seconds.

Run
Set
Alarm
Cal

The instrument makes two beeps and cancels the **Cal** and **Set** indicators.


Changing the Instrument Settings

In Calibration Set mode, the display flashes the item that can be changed. For option settings, the display flashes the complete option. For a numeric parameter, the display flashes one digit at a time, you can change the value of the flashing digit as required, then move the flashing cursor to change another digit.

Note: When you change the setting of a parameter, the instrument records the result as soon as you move to another parameter, or exit from the Calibration Set mode.

Changing Option Settings

When you display an option that can be changed, the entire option flashes on the display, such as the choices of ODD, EVEN or NONE for the communications parity bit checking. Press ▲ or ▼ to change the option. You can "scroll" through the options in either direction to make a selection as shown below.

Changing Numeric Settings

The display flashes the digit that can be changed.

Press to select the digit that you wish to change.

Press ▲ or ▼ to increase or decrease the value of the selected digit.

Changing the Decimal Point

To change the position of the decimal point, press ▶ to move the flashing selection until the decimal point flashes. Press ▶ or ▼ to move the decimal point to the right or left as required.

Units of Measurement

The calibration of some parameters is based on the units that are defined for the relevant variables. These units of measurement can been viewed in the UNITS menu in calibration below.

505 LM01 - 17 June 2017 27

Calibration Menu Tree

Figure 11 and Figure 12 show the keys for moving around the calibration menu tree in Calibration View or Set mode.

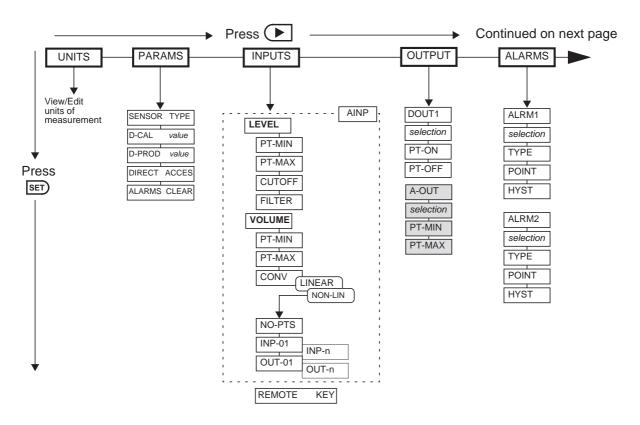


Figure 11 Calibration Menu Tree Sheet 1

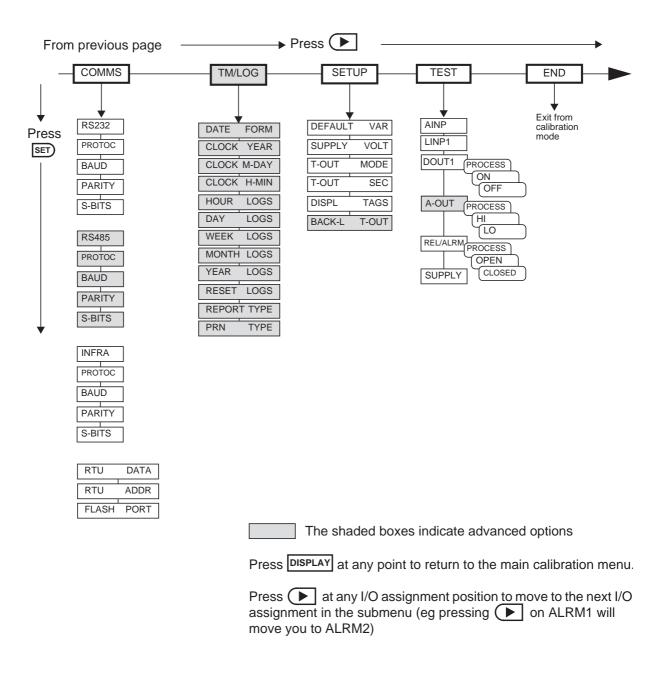


Figure 12 Calibration Menu Tree Sheet 2

505 LM01 - 17 June 2017

Instrument Settings

Units of Measurement

The Units menu allows the units to be viewed and edited if necessary without the reloading of new application software. Any change in units will result in a full reset to initially downloaded settings. Therefore, any required changes to units of measurement should be made before changing any other settings.

SET ↓	igoplus o UNITS params inputs outputs alarms comms tm/log setup test end
ITEM n unit	The units for main menu or calibration items can be viewed by pressing the SET key.
	The units of measurement are password protected. To edit the units the correct password must be entered on entry to EDIT mode.
	Press or to select the required units. Refer to Available Units of Measurement on page 64 for the list of available units.
ACCEPT UNITS	The Accept Units prompt will only appear if one or more of the units have been changed.
	IMPORTANT: Accepting the change of units will initiate a master reset. All calibration parameters will revert to their default value (i.e. those values included in the downloaded instrument software). All totals and any logged information will be cleared.
	Press or to select YES, then press the set key. The instrument makes three beeps to confirm the reset command.
	The message -RESET- PLEASE WAIT will be displayed as the instrument exits calibration mode and completes a full re-boot sequence.

Parameters

SET	\downarrow	$ ightharpoonup$ units $ m {\bf PARAMS}$ inputs outputs alarms comms tm/log setup test end
SENSOR	TYPE	Select the type of sensor being used. A pressure sensor (measuring product head) or a level sensor can be selected. Press or to select LEVEL or PRESSUR.
D-CAL	unit	The calibration density is the density of the product at the time of the tank calibration. This parameter is required only when a pressure sensor is selected.

SET) ↓	lacktriangledown units $PARAMS$ inputs outputs alarms comms tm/log setup test end
I-PROI	unit	The product density is used to provide the product mass based on the calculated volume of product.
DIRECT	ACCE5	If the alarm setpoint direct access is enabled then the operator is able to enter edit mode for the setpoint directly from the alarm menu by holding the SET key while viewing the setpoint. If disabled the setpoint can only be changed from within calibration set mode. Select the direct access mode as required. Press or to select ENABLE or DISABLE.
ALARMS	CLEAR	If the "clear alarms key" is enabled then the operator is able to acknowledge and deactivate the relay of an active alarm by pressing the CLEAR key. Holding the clear key for two seconds will acknowledge and clear all active relays, while individual alarm relays can be cleared in the Alarms Menu with a single press of the clear key. Press or to select ENABLE or DISABLE.

Inputs

SET) ↓	igodallow units params $f INPUTS$ outputs alarms comms tm/log setup test end
Analog I	nput	
INPUL LEVEL	AINP	For this application, the 4-20mA Analog Input is assigned to level.
PT-MIN PT-MAX	LEVEL	Enter the value of the level (in the defined engineering units) that corresponds to the minimum input signal.
		Enter the value of the level (in the defined engineering units) that corresponds to the maximum input signal.
		For example, if the source signal is 4mA at a minimum level of 2m, enter 2 as the minimum point. If the source signal is 20mA at a maximum level of 5m, enter 5 as the maximum point.
		If the sensor is inverted the value entered for the minimum point will be greater than the value entered for the maximum point

SET ↓		$ ightarrow$ Units params $ m I\! I$	NPUTS OUTPUTS ALARMS CO	MMS TM/LOG SETUP TEST END
CUTOFF	FINF	The Cut-off is the lowest value that the instrument reads from the input sensor. The cut-off setting is the percentage of the span of the input values.		
		1	he cut-off value are consi red. In this case, the instru	
FILTER	FINP	Input fluctuations cause the input readings of the averages out these fluct		
		As a guide to the degree of filtering to use, the following table shows response time (in seconds) to reach 90% and 99% of a step change is input. The value A is the filter constant that the user can set.		
		Filter setting A	Seconds to reach 90% of full swing	Seconds to reach 99% of full swing
		0	0	0
		2	2	4
		4	4	8
		6	5	10
		10	8	15
		15	12	23
		20	14	27
		25	18	34
		35	25	48
		45	32	62
		60	42	82
		75	52	102
		90	62	122
		99	68	134
		The input filter range is there is no filtering.	from 0 to 99. A setting of	of 0 (zero) means that

SET ↓	$ ightarrow$ units params $ extbf{INPUTS}$ outputs alarms comms tm/log setup test end
PT-MIN VOL PT-MAX	Enter the value of the tank volume (in the defined engineering units) that corresponds to the level minimum input signal (volume at 4mA).
	Enter the value of the tank volume (in the defined engineering units) that corresponds to the level maximum input signal (volume at 20mA). The maximum point is the same as the base value (set at the minimum point) plus the span value.
	For example, if the source signal is 4mA at a minimum volume of 10m ³ , enter 10 as the minimum point. If the source signal is 20mA at a maximum volume of 100m ³ , enter 100 as the maximum point.
CONV VOL	The instrument can be programmed to correct for the non-linearities in irregular shaped tanks. These tanks have a non-linear relationship between the level and volume of liquid which can be corrected with a normalised strapping table.
	Tank volume conversion type can be selected as follows:
	 LINEAR level to volume relationship, strapping table not required. NON-LINEAR level to volume relationship, normalised strapping table used for level to volume conversion.
	Use ▲ or ▼ to select LINEAR or NON-LINEAR.
NO-PTS VOL	This parameter is available for viewing and editing only when the conversion type is set to Non-linear.
	Enter the number of conversion points required for the normalised level to volume tank strapping table.
	Press or to select a number between 1 and 20 for the number of conversion points.

SET) ↓	ightharpoonup units params $ m INPUTS$ outputs alarms comms tm/log setup test end
INP-01 TABLE to INP-n	This parameter is available for viewing and editing only when the conversion type is set to Non-linear.
	Enter the normalised input value for the conversion point.
	Data on tank non-linearity is usually supplied be the tank manufacturer, in the form of strapping tables. If this data is not available, the user will need to determine the relationship between level and volume. This can be done mathematically by equations, or experimentally, by conducting physical measurements. In either case, the data must be entered as normalised values.
	The instrument uses linear interpolation between the correction points. An input and an output value are entered for each correction point. The values are normalised between the minimum point (0.0) and the maximum point (1.0). Only the points between 0 and 1 are required to be entered and should be entered in ascending order. You can press the DISPLAY key to skip the non-linear points and go to the
	maximum point (1.0). Only the points between 0 and 1 are required to be entered and should be entered in ascending order.

SET) ↓	$ ightarrow$ Units params ${f I}$	NPUTS OUT	PUTS ALARMS CO	OMMS TM/LOG SE	TUP TEST END
	Example. A spherical tank has a signal (PT-MIN) is 0.5 MAX) is 10.0m. The compoints have been calcust 523.599m ³ . The follow	om and the level corresponding lated as PT-N	vel at the max g minimum a MIN = 3.7961	kimum input nd maximum n ³ and PT-M	signal (PT- volume IAX =
	Correction Points Example	Level (m)	Input	Volume (m ³)	Output
	min	0.500	0.000	3.796	0.000
	1	1.094	0.063	17.421	0.026
	2	1.688	0.125	39.699	0.069
	3	2.281	0.188	69.314	0.126
	4	2.875	0.250	104.951	0.195
	5	3.469	0.313	145.295	0.272
	6	4.063	0.375	189.031	0.356
	7	4.656	0.438	234.844	0.444
	8	5.250	0.500	281.418	0.534
	9	5.844	0.563	327.438	0.623
	10	6.438	0.625	371.590	0.708
	11	7.031	0.688	412.557	0.786
	12	7.625	0.750	449.025	0.857
	13	8.219	0.813	479.678	0.916
	14	8.813	0.875	503.202	0.961
	15	9.406	0.938	518.280	0.990
	max	10.000	1.000	523.599	1.000
DUT-01 TABLE to DUT-n	This parameter is avail correction type is set to Enter the normalised of	o Non-linear.	,		n the
REMOTE KEY	You can assign the rer switches on the front p Press or to s panel (from left to right to disable the remote k	panel. select NO-1 tl t) that is set a	hrough NO-5	as the key o	n the front

Outputs

SET	\	$igodellarrow$ units params inputs ${f OUTPUTS}$ alarms comms tm/log setup test end
LOGIC	DOUT1	You can assign any of the main menu variables to the logic control output. It can be used to control the amount of product in a tank by activating a pump or valve for refilling the tank.
		Press or vo select the variable that is required as an output.
PT-ORF	DOUT1 DOUT1	The digital output control ON point determines the value at which the output is activated. The control OFF point determines the value at which the output is deactivated.
		The control ON point should be lower than the control OFF point.
		For example, if the "% FULL" variable is assigned to the control output and it is desired to keep the product in the tank between 30 and 70% full, the PT-ON should be set to 30.0 and the PT-OFF should be set to 70.0.
		If the product level falls below 30% FULL the output will activate and will remain ON until the product reaches 70% FULL. At which point the output will deactivate and remain OFF until the product once again falls below 30%.
4-20	A-OUT	You can assign any of the "rate" main menu variables to the 4-20 mA output.
		Press or to select the variable that is required as an output.
PT-MIN PT-MAX	A-OUT A-OUT	The output minimum value corresponds to the 4mA point and the output maximum value corresponds to the 20mA point.
		Setting the output range differently from the input range enables the instrument to amplify the input signal. You can drive a chart recorder that "zooms in" on a specified range of values instead of displaying the full operating range of the transducer.
		For example, if the minimum point is set to 30% and the maximum point is set to 100%, the 4 to 20mA range would reflect the product level range of 30 to 100%. At level above the maximum and below the minimum points, the output remains at 20mA and 4mA respectively.

Alarms

Thealarm relay(s) can be assigned to rate variables such as level, or set as an equipment failure alarm.

The alarm switches "on" whenever an alarm condition exists. The alarm switches "off" when the alarm condition no longer exists. For further details, refer to **Operation of Alarms** on page 22.

Equipment Failure Alarm

Any alarm relay can be assigned as an equipment failure alarm. This alarm setting can have normally closed (open) contacts that open (close) when the instrument displays any error message as listed in **Error Messages** on page 45.

SET	\	$igoplus o$ units params inputs outputs \mathbf{ALARMS} comms tm/log setup test end
RELAY	ALRMn	Select a rate variable to assign to the alarm relay.
		Note: If the alarm type is set to "equipment alarm", this relay assignment setting is ignored.
		Press or to select the variable that is required as an alarm.
TYPE	ALRMn	The options available for alarm types are as follows:
		HI-NO — High Alarm, Normally Open contacts
		HI-NC — High Alarm, Normally Closed contacts
		LO-NO — Low Alarm, Normally Open contacts
		LO-NC — Low Alarm, Normally Closed contacts
		BD-NO — Band Alarm, Normally Open contacts
		BD-NC — Band Alarm, Normally Closed contacts
		AL-NO — Equipment Alarm, Normally Open contacts
		AL-NC — Equipment Alarm, Normally Closed contacts
		Press or to select the type of alarm required.

SET	\downarrow	$lacktriangledown$ units params inputs outputs \mathbf{ALARMS} comms tm/log setup test end
POINT	FLRMn	The Alarm Setpoint is available for viewing and editing for any alarm type except 'equipment alarms'.
		The Alarm Setpoint is the value (in engineering units of assigned variable) at which the alarm condition occurs and therefore the alarm is on.
		Each alarm is completely independent, e.g. a High alarm does NOT need to have a higher setpoint than the a Low alarm.
HY5T	ALRM <i>n</i>	The Alarm Hysteresis is available for viewing and editing for any alarm type except 'equipment alarms'.
		Alarm hysteresis loops occur when the alarm toggles continuously on and off when the process variable is close to the setpoint.
		For a high alarm, the alarm activates when the value of the variable rises above the alarm setpoint and deactivates when the value falls below the alarm setpoint minus the amount of the hysteresis setting (if any).
		For a low alarm, the alarm activates when the value of the variable falls below the alarm setpoint and deactivates when the value rises above the alarm setpoint plus the amount of the hysteresis setting (if any).
		For a band alarm, the alarm activates whenever the value of the variable is outside the setpoint plus or minus the amount of the hysteresis.
		For example, with a high alarm setpoint of 200, and a hysteresis setting of zero, a value oscillating between 197 and 202 will cause the alarm to toggle on at 200 and toggle off below 200. However, if the hysteresis is set to 5, the value of the variable must fall below 195 to cancel the alarm. The alarm will reactivate only when the value again rises above 200.

Communications

The instrument has the following communication ports:

- **RS-232 Port** Three terminals on the rear of the instrument. There is also an optional 9-pin female connector on the rear panel of the instrument.
- **RS-485 Port** Terminals on the rear panel.
- **Infra-red Port** (optional) Discontinued Although program settings may be visible in calibration, the required hardware is no longer available. The Infra-red protocol assignment (PROTOC INFRA) should be set to NONE and the remaining INFRA settings can be ignored.

SET \downarrow UNITS PARAMS		igodellar $igodellar$ units params inputs outputs alarms $f COMMS$ tm/log setup test end		
PROTOC	R5232 R5485 INFRR	The Communications Protocols can be assigned to the communication ports as follows (a protocol cannot be assigned to more than one port at a time):		
		 RTU - Modbus RTU available for all ports PRN - Printer Protocol available for RS232 and RS485 NONE - If a port is not being used, set the protocol to NONE. 		
		Printer Protocol (PRN) is only available if the option with Real Time Clock is installed.		
		For the selected port, press or to select the desired protocol.		
ILURE	RS232 RS485 INFRR	The Baud setting is the speed of the communication port in data bits per second.		
		The baud rate of the instrument must match the baud rate of the communication device that the instrument is connected to.		
		Use ▲ or ▼ to select 2400, 4800, 9600 or 19200 baud.		
PARITY	RS232 RS485 INFRR	The Parity bit helps to detect data corruption that might occur during transmission.		
		The parity bit setting of the instrument must match the parity bit setting of the communication device that the instrument is connected to.		
		Press ▲ or ▼ to select EVEN, ODD, or NONE.		
5-BITS	R5232 R5485 INFRA	The Stop bit indicates the end of a transmission. Stop bits can be 1 or 2 bit periods in length. The stop bit setting of the instrument must match the stop bit setting of the communication device that the instrument is connected to.		
		Press ▲ or ▼ to select 1 or 2 stop bits.		
RTU	DATA	The Modbus RTU data format for the 2-register (4-byte) values can be set as either floating point or long integer values.		
		Use ▲ or ▼ to select FLOAT or INTEGER.		

SET) ↓		ightarrow units params inputs outputs alarms $ m COMMS$ tm/log setup test end	
RTU	AJJR	The Modbus RTU protocol address must be in the range of 1 to 247. When multiple instruments (slaves) are connected to one communication device (master), each assigned address must be unique.	
		Note: The master device uses the RTU address 0 (zero) for broadcasting to all connected slave units.	
FLASH	PORT	The Flash Driver Port assignment defines the communication port for downloading software into the instrument.	
		The default setting of this assignment is the RS-232 port.	
		Press ▲ or ▼ to select RS-232, RS-485, or INFRA.	

Time Settings and Data Logging

Instrument Clock

Note: The real-time clock is part of the advanced option package.

The instrument has a real-time clock for recording logged events. The clock displays the time and the date. The date format can be set to European format (day/month/year) or American format (month/day/year). The time clock uses the 24-hour format.

The clock will continue to operate for up to 5 years (typically) on the internal battery if there is no power connected to the instrument. Therefore, after an interruption to the power supply, the instrument recommences normal operation although there will be no data recorded during the period without a power supply.

Note: If there is an interruption to the power supply and the battery has failed, the instrument displays an error message when the power supply is restored. In this case, you should set the current time and date so that the instrument continues to log data at the correct times.

Data Logging

The instrument can store up to 100 log entries of the main-menu variables. These logs can all be for one time interval, or shared with other timescales. For example, you can specify 40 hourly logs, 30 daily logs, 15 weekly logs, 10 monthly logs and 5 yearly logs.

The log parameters (below) for each timebase also determine the number of records to be included in a report print out if the printing option is used.

SET) ↓		igodellarrow units params inputs outputs alarms comms TM/LOG setup test end	
DATE	FORM	Clock Date Format	
		The European date format is: dd/mm/yyyy or (Day-Month).	
		The American date format is: mm/dd/yyyy or (Month-Day).	
		Press ▲ or ▼ to select DAY-M or M-DAY	
CLOCK	YEAR	The Clock Year defines the current year for the real-time clock.	
CLOCK	YAL-M	The Clock M-DAY setting defines the current month and date for the real-time clock. This parameter is programmed in Month-Day format for both European and American date formats.	
CLOCK	H-MIN	The Clock H-MIN setting is the current time in hours and minutes for the real-time clock.	
HOUR	L065	Set the number of Hourly Logs to be recorded and to appear on the printed log report.	
		The hourly log entry occurs at 00 minutes each hour.	
JAY	L065	Set the number of Daily Logs to be recorded and to appear on the printed log report.	
		The daily log entry occurs at 00 hours and 00 minutes each day.	
MEEK	L065	Set the number of Weekly Logs to be recorded and to appear on the printed log report.	
		The weekly log entry occurs at 00 hours and 00 minutes each Monday.	
MONTH	L065	Set the number of Monthly Logs to be recorded and to appear on the printed log report.	
		The monthly log entry occurs at 00 hours and 00 minutes on the first day of the month.	
YEAR	L065	Set the number of Yearly Logs to be recorded and to appear on the printed log report.	
		The yearly log entry occurs at 00 hours and 00 minutes on the first day of the year.	

SET) ↓	igodellar units params inputs outputs alarms comms TM/LOG setup test end		
RESET LOGS	Reset the logged data. You may need to reset (clear) the logged data if you change the time/log settings. Press or to select YES, then press the set key. The instrument makes three beeps to confirm the reset command.		
REPORT TYPE	The Printer Protocol Report Type determines the nature of the printout from the REPORT PRINT - HOLD.SET prompt in the main menu. The following report types available in this instrument are:		
	 REP-01 Hourly Logs Report REP-02 Daily Logs Report REP-03 Weekly Logs Report REP-04 Monthly Logs Report REP-05 Yearly Logs Report REP-06 Previous Day's 24 Hour Report (0Hr – 23Hr, minimum 48 hourly logs required) 		
	Press ▲ or ▼ to select Report Type.		
PRN TYPE	The Printer Protocol Printer Type allows the nature of the printer being used to be specified. The following printer types available in this instrument are:		
	 PRN-01 Generic computer printer PRN-02 Generic roll printer (prints first line first) PRN-03 Slip printer TM295 		
	Press or to select Printer Type.		

General Setup Parameters

SET) ↓		lacktriangledown units params inputs outputs alarms comms tm/log $f SETUP$ test end	
JEFAULT	VAR	Select the main menu variable to display on power up or when the display timeout period has elapsed if it is enabled.	
		Press or to select the default variable display.	
SUPPLY	VOLT	The instrument provides a power-limited supply for external transducers.	
		Press or to set the transducer supply voltage between 8 and 24 volts DC as required.	

SET ↓	lacktriangledown units params inputs outputs alarms comms tm/log $f SETUP$ test end	
T-OUT MODE	If the Display Timeout mode is enabled, and there is no user activity for the defined timeout period, the display panel returns to the default display.	
	This function is useful for the following reasons:	
	 to return the display to a preferred variable after the user has finished reading other information, to cancel the calibration mode and return to the default display if the user does not exit from the calibration mode for any reason. 	
	user does not exit from the calibration mode for any reason.	
	Press or to select the display timeout function as follows:	
	 DISABLE - Timeout is completely disabled. EN DISP - Timeout is enabled during Normal mode and Calibration View mode. 	
	 EN EDIT - Timeout is enabled during Calibration Set mode. EN ALL - Timeout is enabled for all modes. 	
T-OUT SEC	The Display Timeout period defines the delay for the Display Timeout mode if it is enabled.	
	The display timeout period can be from 10 to 99 seconds.	
DISPL TAGS	The Display Tags option determines whether the instrument displays the default display tags or the user-defined tags. The display tag setting also defines whether the instrument displays the default error and warning messages, or the user-defined messages.	
	Note: The user-defined tags can be entered into the instrument only by the manufacturer or the distributor.	
	Press or to select the Display Tags option as follows:	
	 DEFAULT - the instrument displays the default (English) tags USER - the instrument displays the user-defined tags. 	
BACK-L I-OUT	If the backlight timeout is enabled, and there is no user activity (any keys pressed) for a period of 10 seconds, the display backlight switches off to save power. The backlight switches on when a key is pressed. Select the backlight timeout mode as required.	
	Press ▲ or ▼ to select ENABLE or DISABLE.	

Test Menu

The Test menu enables you to view the inputs and outputs to and from the instrument.

In Calibration Set mode, (by entering the system password) you can control the outputs and the alarms as described in the table below.

SET) ↓		igodium o units params inputs outputs alarms comms tm/log setup $TEST$ end	
RINP	mΑ	The current of the signal input to AINP is displayed in milliamps.	
LINPn	STATE	You can view the state of the logic input. If the input is an open contact or inactive it will display HI . If the input is a closed contact or active it will display LO .	
IOUT <i>n</i>	STATE	You can control the state of the outputs. Press the ▲ or ▼ keys to set the output state as follows:	
		 PROCESS - the output depends on the current values of the inputs and the calculations that the instrument performs. ON - the output is activated. OFF - the output is deactivated. 	
A-OUT	STATE	You can control the state of the outputs. Press the ▲ or ▼ keys to set the output state as follows:	
		 PROCESS - the output depends on the current values of the inputs and the calculations that the instrument performs. HI - the output is set to 20mA. LO - the output is set to 4mA. 	
ALRMn or REL-n	STRIE	You can control the state of the relays (alarms). Press the ▲ or ▼ keys to set the selected relay as follows:	
		 PROCESS - the relay operates according to the current values of the inputs and the relay settings as programmed. OPEN - the relay output contacts are set to "open". CLOSED - the relay output contacts are set to "closed". 	
SUPPLY	V	You can display the actual DC output supply voltage, which may help with troubleshooting.	
		If the actual supply voltage is lower than the preset value (refer to General Setup Parameters on page 42) it may indicate that the output is overloaded.	

System Messages

The instrument displays messages for defined events and fault conditions.

The manufacturer or distributor can enter user-defined text for the messages. This user-defined text is displayed, instead of the default (English) messages, when the Display Tags option in the Setup menu is set to USER.

Error Messages

The system displays error messages as described in the following table:

Error Messages	Description
CPU Card Failure	There are failed components on the CPU card and technical support is required.
Power Supply is Low	The input and/or output power supply voltage is too low, ensure that: (a) input power supply voltage is within the specified range (b) output power supply is not overloaded.
New/Failed Battery - Set Time	The real-time clock has lost the correct time because the battery has failed, or there is a new battery. Set the current time and date (in the TM/LOG menu) to clear the error message and to continue data logging at the correct times.
	Note: The instrument can continue operating with a failed battery, but the correct time will be lost if there are interruptions to the power supply.
Analog Input Signal Failure	The level sensor (analog input) has failed.
	It is not possible to override this error condition. The instrument cannot operate without a level input.

Warning Messages

The system displays warning messages as described in the following table:

Warning Messages	Description
Value Has Been Set to Default	You have entered an invalid value for a parameter. Therefore, the instrument has set the default value.
Over Total Limit - Maximum Set	You have exceeded the maximum number of logging entries for the combined time bases. The instrument has set the current log setting to the remaining maximum number.
Already Assigned to Other Port	You have tried to assign a particular protocol type to more than one serial communication port. The instrument has set the protocol to NONE.

Alarm Messages

The instrument displays alarm messages as described in the following table:

Alarm Messages	Description
Alarm 1 is Active	The alarm condition, as defined for relay alarm 1 in the ALARMS section of calibration, is present.
Alarm 2 is Active	The alarm condition, as defined for relay alarm 2 in the ALARMS section of calibration, is present.

Chapter 6 Communications

Overview

This chapter describes the communications between the instrument and another communicating device such as a computer or a printer. You should have relevant information about the devices to which the instrument will be connected. Some connection examples are included in this manual, however, the operation and connection of other devices is outside the scope of this manual.

Hardware Interconnection

The instrument has two communication ports:

- RS-232 port on the rear panel (plus extra DB9 female connector)
- RS-485 port on the rear panel

The appropriate interface and protocols are selected during calibration.

RS-232 Port

The RS-232 port provides communication between the instrument and one other device such as a host computer or a printer.

Note: A printer must have a serial port to be able to be directly connected to the flow computer. It is not possible to communicate directly with a printer via a parallel port.

Computers use either a DB9 or a DB25 connector, and the connections to each type are shown in Figure 13.

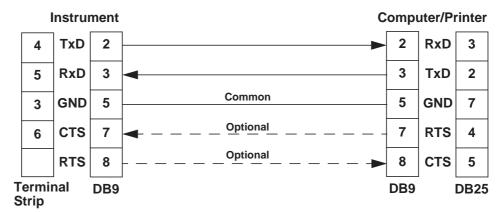


Figure 13 RS-232 Cable Connections to a Computer

Note: The instrument requires a cable with straight-through connections. Do not use a null modem cable for RS-232 connection to a computer.

RS-485 Port

The RS-485 port enables communication with multiple devices. Each device has a unique address so that the "master" device can communicate with specific "slave" devices.

On RS-485 links, an external terminating resistor must be connected at the furthest end of the cable. When multiple instruments are connected, they should be "daisy chained" in a multidrop configuration as shown in Figure 14. Up to 32 units can be connected to the interface at a maximum distance of 1200 metres.

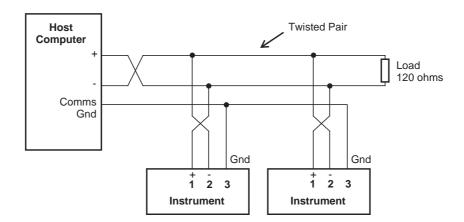


Figure 14 RS-485 Connections

Protocols

The communications protocols can be assigned to the communication ports on the instrument as follows:

- RTU Modbus RTU available for all ports
- **PRN** Printer Protocol available for RS232 and RS485
- **NONE** If a port is not being used, set the protocol to NONE.

Note: The Printer Protocol is only available if the option with Real Time Clock is installed. Also a protocol cannot be assigned to more than one port at a time as described in **Communications** on page 38.

- **Modbus RTU** Modbus RTU is an industry-standard protocol which allows the instrument to be easily connected to computers running supervisory software systems.
- **Printer** In the Printer protocol there is a selection of printer types. Please refer to the **Printer Protocol** on page 55 for full details.

Modbus RTU Protocol

Modbus RTU (remote terminal unit) is an industry standard protocol that allows the instrument to be easily interfaced to other communication devices.

The instrument implements the Modbus protocol as detailed in the *Modicon Modbus Protocol Reference Guide* PI-MBUS-300 Rev J (June 1996).

Message Format

In RTU mode, messages start with a silent interval of at least 3.5 character times. The first field transmitted is the device address. Following the last transmitted character, a similar interval of at least 3.5 character times marks the end of the message. A new message can begin after this interval. The entire message frame must be transmitted as a continuous stream. A typical message frame is shown below:

Address	Function	Data	CRC Check
1 byte	1 byte	n bytes	2 bytes

Except for broadcast messages, when a master device sends a query to a slave device, it expects a normal response. One of four possible events can occur from the master's query:

• If the slave device receives the query without a communication error, and can handle the query normally, it returns a normal response.

- If the slave does not receive the query due to a communication error, no response is returned. The master program has to process a timeout condition for the query.
- If the slave receives the query, but detects a communications error (parity or CRC), no response is returned. The master program has to process a timeout condition for the query.
- If the slave receives the query without a communication error, but cannot handle it (for example, if the request is to read a nonexistent register), the slave will return an exception response informing the master of the nature of the error.

Instrument Address

The address of the instrument is programmable in the range from 1 to 247. Some addresses are reserved according to PI-MBUS-300 and have a special meaning:

- 0 =Broadcast, no response required from slave devices
- 248 to 255 Reserved

Function Codes

The instrument accepts the following function codes:

Code	Name	Description
03	Read data register(s)	Obtain the content of one or more 2-byte data registers.
06	Preset data register	Preset one 2-byte data register.
07	Read status register	Obtain the content of 1-byte status register.
16	Preset data register(s)	Preset one or more 2-byte data registers.

505 LM01 - 17 June 2017

Exception Response

The instrument forms an exception response by adding 80H to the function code and using an exception code as the 1-byte data field in the returned frame. Implemented exception codes are as follows:

Code	Name	Description
01	Illegal function	The function code is not a legal action for the slave.
02	Illegal data address	The data address is not a legal address for the slave.
03	Illegal data value	The data value is not a legal value for the slave.
05	Acknowledge	The slave has accepted the request and is processing it, but a long duration of time will be required to do so.
06	Slave device busy	The slave is engaged in processing a long duration program command. The master should re-transmit the message later when the slave is free.

List of Data Registers

The following list describes the addresses and meaning of the data registers in the instrument. The data values are expressed in the engineering units that were selected for the variables when the instrument settings were configured. The "Data Type" for the 2-register (4-byte) data values can be set in programming mode as Floating Point or Long Integer as described in **Communications** on page 38.

The registers are grouped in blocks that relate to a particular function of the instrument.

Note: Conventional numbering of registers often starts from 1, therefore be aware that "register 1" in this case has "address 0" and so on.

Current and Logged Process Data

This block of registers is available for the retrieval of current or logged process data with its matching time and date information.

Use the log timebase and log number to retrieve the logged information from the appropriate register. If a particular log number does not exist, or the instrument does not have the optional real-time clock, the time and date stamp and associated variables are set to zero.

Register	Name	Comments	Read Only or Read/Write	Туре
1	Product Volume		R	DT*
3	Product Level		R	DT
5	Volume Full Percentage		R	DT
7	Product Mass		R	DT
9	Reserved		R	DT
11	Reserved		R	DT
13	Reserved		R	DT
15	Reserved	Process Variables	R	DT
17	Reserved		R	DT
19	Reserved		R	DT
21	Reserved		R	DT
23	Reserved		R	DT
25	Reserved		R	DT
27	Reserved		R	DT
29	Reserved		R	DT
31	Year		R/W	I [†]
32	Month	Current Date/Time or	R/W	I
33	Date	Logged Date/Time Stamp	R/W	I
34	Hour	(see register 38 Log Number).	R/W	I
35	Minute	Only current Date/Time can be edited	R/W	I
36	Second		R	I
37	Log Type	00 - hourly or log records 01 - daily 02 - weekly 03 - monthly 04 - yearly 05 - last edit of calibration	R/W	I
38	Log Number	If set to 0, current variables and Date/Time are retrieved	R/W	I
39	Clear Data	01 - clear logs 02 - clear accumulated totals 03 - clear non accumulated totals	W	I
40	Reserved			

^{*} DT = Data Type of 2-register (4 byte) values can be set as Floating Point or Long Integer values

Note: The Floating Point variable is represented in IEEE-754 Floating Point 4-byte format and requires two 2-byte data registers:

IEEE-754	Modicon Registers
1st byte	low byte (register X)
2nd byte	high byte (register X)

[†] I = Integer (2 bytes) (Holding Registers)

IEEE-754	Modicon Registers
3rd byte	low byte (register X+1)
4th byte	high byte (register X+1)

This means that two data registers must be read or written to obtain, or preset, one data value.

Instrument Exception Status

This register is available to verify the status of the instrument.

Register	Name	Comments	Read Only or Read/Write	Туре
41	Exception	00 = no error	R	l*
	Status	01 = analog input 1 failure		
		02 = analog input 2 failure		
		03 = analog input 3 failure		
		04 = analog input 4 failure		
		05 = invalid calibration parameter		
		06 = invalid reference parameter		
		07 = invalid property		
		08 to 09 reserved		
		10 = process parameters out of range		
		11 = input is over limit		
		12 = flow error detected		
		20 = system failure		
		21 = power supply is low		
		22 = new or failed clock battery		
		23 to 29 reserved		
		30 = alarm 1 active		
		31 = alarm 2 active		
		32 = alarm 3 active		
		33 = alarm 4 active		

^{*} I = Integer (2 bytes) (Holding Registers)

Instrument Configuration, Control and I/O

This block of registers is available in some applications to give access to important information in the instrument.

Register	Name	Comments	Read Only or Read/Write	Туре
42	Reserved			
43	Reserved			
44	Reserved			
45	Relay State	0 to 15 Binary representation of relay status. 0 = open; 1 = closed. B0 = relay 1 (LSB) B1 = relay 2	R	I.

Register	Name	Comments	Read Only or Read/Write	Туре
46	Relay Control	0 to 15 Binary representation of relay control. 0 = open; 1 = close.	R/W	I
		B0 = relay 1 (LSB) B1 = relay 2		
47	Relay Control Source	0 to 15 Binary representation of relay control source. 0 = Local (controlled by instrument operation) 1 = RTU (controlled by Modbus register 46). B0 = relay 1 (LSB) B1 = relay 2	R/W	I
48 to 50	Reserved			
51 to 99	Reserved			
101	Analog Input	The input is configured for 4-20mA. The value will be read in Amperes.	R	DT [†]

^{*} I = Integer (2 bytes) (Holding Registers)

[†] DT = Data Type of 2-register (4 byte) values can be set as Floating Point or Long Integer values

Printer Protocol

A printer protocol is available in the 500 Series. It provides the ability to print out live data, individual logged data and to do some report-style printing of logged data. The method of printing these and the format of the printouts is described below.

Note: Printer output is only available if the Real Time Clock option is fitted.

The selection of Printer Protocol can be made for the Communications Protocol options for the RS232 or RS485 port. A list of log report types and printer types available at the end of the TM-LOG calibration menu.

Report Types

The list of report types is as follows:

• REP-01	Hourly Logs Report
• REP-02	Daily Logs Report
• REP-03	Weekly Logs Report
• REP-04	Monthly Logs Report
• REP-05	Yearly Logs Report
• REP-06	Previous Day Hourly Logs (0Hr – 23Hr, minimum 48
	hourly logs required)

The number of logs printed in each report are determined by the values programmed for each timebase in the TM-LOG menu.

Printer Types

The list of available printers is as follows:

PRN-01 Generic computer printer
 PRN-02 Generic roll printer (printing first line first)
 PRN-03 Slip Printer TM295

Customizing a Printout

A customized printout can be provided which can have up to 4 header lines and 3 footer lines. It is also possible to include or exclude each main menu items on the printout. If any customizing of the printout is required discuss this with the distributor.

Types of Printouts

Live Data

The CLEAR key, when in main menu, is shared as the PRINT key if the printer protocol has been selected. A printout will be initiated whenever this key is pressed. If printing is not required, do not select printer protocol.

The format of this printout will be:

Custom Header Line 1 Custom Header Line 2 Custom Header Line 3 Custom Header Line 4

Current Docket No.

Instrument Serial No. & Tag

Current Date & Time & Status
Variable unit value
Variable unit value
etc.

Custom Footer Line 1 Custom Footer Line 2 Custom Footer Line 3

----- <separation line>

(Note that blank header and footer lines are not printed).

Docket Number

The docket number that appears on the live data printout indicates the print number. This number is cleared when the accumulated totals are reset.

Instrument Serial Number and Unit Tag

The instrument serial number and unit tag is the same as the information shown in the Model Info menu. For more details refer to **Model Information** on page 21.

Individual Log Data

When in the Log Menu and while holding the DISPLAY key to view the data of the log of interest the RESET key can be pressed to initiate a printout of that log entry. The printout will have the time and date stamp corresponding to when the log was taken. After the print has been initiated there will be the opportunity to scroll to view another log entry and print again.

Custom Header Lines

Instrument Serial No. & Tag

Log Date & Time & Status

Variable unit value Variable unit value

etc.

Custom Footer Lines

----- <separation line>

Log Report Printing

As there is the likelihood that the reports can be of a considerable length it is strongly recommended that only the 80 Column printer with Z fold (tractor feed) paper be used. This is just as much for the memory storage of printer as it is for the reliable paper supply.

There is a HOLD.SET REPORT PRINT prompt under the main menu with the ability to print the pre-selected type of report. Pressing and holding the SET key for two seconds will initiate the printout. Any of the Log Reports will have the following format:

Custom Header Lines

Title of Report <internally set, indicates report type>

Current Date & Time

Instrument Serial No. & Tag

----- <separation line>

Log No. Date & Time & Status
Variable unit value
Variable unit value

etc.

----- <separation line>

Log No. Date & Time & Status
Variable unit value
Variable unit value

etc.

----- <separation line>

Log No. Date & Time & Status
Variable unit value
Variable unit value

ETC

Custom Footer Lines ----- <separation line>

Reports such as "All Hourly Logs" will print in the historical order, and for those logs that have no data (e.g. unit was powered off at the time) the print will show "Data not available". i.e.

Log No. Date & Time & Status Variable unit value Variable value unit etc ----- <separation line> Log No. Data Not Available ------ <separation line> Log No. Date & Time & Status

Variable unit value Variable unit value etc.

If the unit is programmed for 0 logs for a particular time base then the report for that time base will only consist of the header and ID information and a "Data Not Available" message. Likewise for the 0Hr to 23Hr report to print the complete report there must be a minimum of 48 hourly logs programmed otherwise "Data Not Available" will be printed for the missing logs.

Custom Header Lines

Title of Report

Current Date & Time Instrument Serial No. & Tag

Data Not Available

Custom Footer Lines

----- <separation line>

Printer Data Control

Some printers have limited data buffers and are therefore unable to collect all the print data being transmitted. The 500 Series has the capability of software handshaking. The Xon/Xoff characters can be used by any of the printer types to control the flow of data to ensure that data is not lost.

Some printers will also transmit an Xoff character in response to other events such as printer being off-line, print head not engaged or power being removed. The specific behaviour of the printer being used should be noted.

58 505 LM01 - 17 June 2017

Error Messages

There are two printer error messages that can be displayed.

PAPER OUT

This message is related to the Printer Type PRN-03 TM295 Slip printer. It is standard procedure with this printer to check for paper status before printing. If a print is attempted but there is no paper the PAPER OUT message will be scrolled. The instrument will continue to poll the printer for paper and if paper is detected before a communications timeout expires the print will commence.

COMMS TIMEOUT

This message is relevant for all printer types and will be activated for the following conditions.

- 1. If the flow of data is stopped due to software or hardware handshaking and is not allowed to resume before the communications timeout.
- 2. If Printer Type is PRN-03 Slip printer and a paper status is requested but no response is received within the timeout period.
- 3. Paper Out has been detected for Printer Type PRN-03 but no paper is inserted within the timeout period.

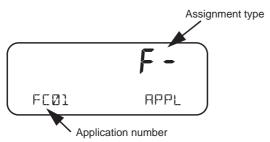
When a communications timeout error has been activated the message COMMS TIMEOUT will be scrolled once, the request to print will be cleared and the instrument will return to its normal mode.

Appendix A Model Numbers

Product Codes

Model	Supplementary Code					/ Co	ode	Description
505 .	- LM01						LM01	
	1							Panel mount enclosure
	2							Field mount enclosure (NEMA 4X / IP66)
Enclosure	3/5							Explosion proof Ex d (IECEx/ATEX), metric glands (5 specifies heater)
	4/6							Explosion proof Ex d (CSA), NPT glands (6 specifies heater)
Output Optic	one	0						Basic - RS232 and RS485 serial ports, 2 relays, 2 pulse outputs, rear key input
Output Option	OHS	1						Advanced - also includes 4-20mA o/p and Real-time clock for printer output and logging (100 logs)
Extra Option	าร	•	2					9-way DB connector for RS232 serial port
			•	Α				Inputs for 12-28VDC and 110/120 VAC, 50-60Hz
Power Supp	ly			E				Inputs for 12-28VDC and 220/240 VAC, 50-60Hz
				D				Input for 12-28VDC power only
Display Pan	el Op	otion	s		s			Standard option (now with backlight & LCD backup) (original Full option: F, with Infra-Red comms, no longer available)
PCB Protection						С		Conformal coating - required for maximum environmental operating range. Recommended to avoid damage from moisture and corrosion.
						N		None - suitable for IEC standard 654-1 Climatic Conditions up to Class B2 (Heated and/or cooled enclosed locations)
Application Pack Number LM01							LM01	Defines the application software to be loaded into the instrument
For example: Model No. 505.112ESC Displayed on the 500 Series as: Note: The first character represents the CPU installed							alled	1-15-
(factory use only). The remaining 6 characters only represent hardware that affects the operation.					acte	rs on		202 MOJEL

Note: Example full product part number is 505.112ESC-LM01 (This is the number used for placing orders).


505 LM01 - 17 June 2017

Custom Version Codes

	Code			Description
	00			Factory Default Application
	01			Contrec Systems Pty. Ltd. Melbourne Australia
	02			Contrec Limited. West Yorkshire UK
Origin Code	03			
Identifies Distributor	04			Contrec - USA, LLC. Pelham AL 35124 USA
	05			Flowquip Ltd. Halifax UK
	06			
	etc.			
	0			English (Default)
		1		German
		2		Dutch
User Language		3		French
		4		Spanish
		5		
		etc.		
			000	Distributor's own shoice Descibly a sade that identifies the
Distributor's Code 999				Distributor's own choice. Possibly a code that identifies the customer and the application.
			999	
For example: 02 3 157			,	023157
Displayed on the 500 Series as:				CUSTOM VERS

Application Information Code

The Application Information code is an aid for users and service personnel to determine the type of inputs that are used in a particular application. The Application Information code is displayed on the instrument as shown below.

The Application number identifies the application as in the following examples:

- BC01 single channel batch controller for frequency flow input.
- FC01 single channel flow computer for frequency flow input

The Input Assignment type indicates the physical input that is assigned to each input on the instrument. The code is made up from two characters as follows:

FINP	AINP
X	Х

The codes are as follows:

- - not used in this application
- A indicates an analog flow input such as for volume or mass
- F indicates a frequency flow input such as for volume or mass
- L indicates a level input
- d indicates a density input
- Ł indicates a temperature input.

For example, **F** L is an instrument with FINP (frequency input) assigned to a flow input, AINP (analog input) assigned to a level input.

Appendix B Units of Measurement

Available Units of Measurement

The following is a list of the available units of measurement used across the range of 500 Series applications.

Units Type	Available units of measurement
Volume	m ³ , Km ³ , Ltr, mL,Gal, KGal, MGal, ft ³ , kft ³ , Mft ³ , bbl
Volume Flowrate	m³/s, m³/min, m³/h, m³/D, L/s, L/min, L/h, L/day, mL/s, mL/min, mL/hr, Gal/s, Gal/min, Gal/h, KGal/D, MGal/D, ft³/s, ft³/min, ft³/h, Mft³/D, bbl/s, bbl/min, bbl/h, bbl/D
Volume K-Factor	P/m ³ , P/Ltr, P/mL, P/Gal, P/ft ³ , P/bbl
Mass	kg, g, Ton, lb, Klb
Mass Flowrate	kg/s, kg/min, kg/h, g/s, g/min, g/h, Ton/min, Ton/h, Ton/D, lb/s, lb/min, lb/h, Klb/min, Klb/h, Klb/D
Mass K-Factor	P/kg, P/g, P/Ton, P/lb, P/Klb
Energy	kJ, MJ, GJ, kWh, MWh, kBTU, Ton.h, therm, cal, kcal, Mcal
Power	kJ/h, MJ/h, GJ/h, kW, MW, kBT/M, kBT/h, Ton, therm/min, therm/h, kcal/h, Mcal/h
Energy K-Factor	P/kJ, P/kWh, P/kBTU, P/Ton.h, P/therm, P/kcal
Temperature	Deg K, Deg C, Deg F, Deg R
Pressure	Pa, kg/m², kg/cm², kPa, MPa, mbar, bar, psi, Atm, inH ₂ O, mmH ₂ O
Density	kg/m³, kg/Ltr, lb/ft³, SG60F
Specific Volume	m ³ /kg, L/kg, ft ³ /lb
Specific Enthalpy	kJ/kg, BT/lb, cal/g, cal/kg, kcal/kg, Mcal/kg
Reynolds Number	E+0, E+3, E+6 (scaling for unitless variable)
Length (Level)	m, mm, cm, INCH, FOOT
Velocity	m/s, m/M, m/h,ft/s, ft/M, ft/h
Length K-Factor	P/m, P/cm, P/INCH, P/FOOT
Area	m^2 , ft^2
Ratio	%
General Input	Pressure, Temperature, Density, Length (Level), Factor

Index

Numerics	codes
4-20mA	application information 62
input 11	customer version 62
output 12	exception 53
	product number 61
A	communication
alarm	connections 14
connection 13	protocols 49
equipment failure 37	communications 3, 47
hysteresis 38	menu 38
relays 36	connections
setpoint 38	alarm 13
alarms	communication 47
menu 21	communications 14
messages 46	electrical 10
setpoints 22	input 11
ALARMS key 18	output 12
alarms menu 37	control modes 22
application code 62	customer version codes 62
approvals 4	customizing a printout 55
FCC Declaration 5	0 1
	D
В	daily logging 41
back panel 10	data log
battery	viewing 19
failed 45	data logging
life 40	daily 41
new 45	hourly 41
baud rate 39	monthly 41
	weekly 41
C	yearly 41
calibration	date format 41
menu 28	declaration FCC 5
set mode 26	default variable 17
view mode 25	display
CLEAR key 18	specifications 7
clock	timeout mode 43
battery 40	timeout time 43
date format 41	DISPLAY key 18, 21
real-time 40	display-only parameter 25

E	logging
earthing 15	daily 41
electrical connections 10	hourly 41
equipment failure alarm 37	monthly 41
error messages 45	weekly 41
exception codes 53	yearly 41
F	\mathbf{M}
features 1	main menu items 18
flash driver port assignment 40	menu
format, date 41	alarms 37
front panel	calibration 28
keys 17	comms 38
LEDs 17	inputs 31
	outputs 36
H	params 30
hardware connections 47	setup 42
hourly logging 41	test 43
hysteresis, alarm 38	tm/log 40
T	units 30
I	messages
infra-red port 38	alarms 46
input	error 45
4-20mA 11	system 44
connections 11	warning 45
inputs menu 31	Modbus data format 39
installation 9	Modbus RTU protocol 49
instrument	mode
settings 30	display timeout 43
interconnections, communication 47	normal operation 17
interference suppression 14	process control 22
K	set calibration 26
key	view calibration 25
ALARMS 18	model numbers 61
CLEAR 18	monthly logging 41
DISPLAY 18, 21	mounting 9
LEVEL 17	N 7
RESET 18	N
TOTAL 18	normal mode 17
keys, front panel 17	number
Keys, from paner 17	model 61
L	serial 21
LEDs, status 17	O
LEVEL key 17	
logged data 19	operation, control modes 22 operation, normal mode 17
viewing 19	output
viewing 1)	connections 12
	4-20mA 12
	T 40111/1 14

pulse 12	RS-232 port 14, 38, 47
outputs menu 36	RS-485 port 15, 38, 48
_	RTU protocol 49
P	~
panel	S
LEDs 17	serial number 21
mounting 9	setpoint, alarm 38
rear 10	setpoints
parameter	alarms 22
display-only 25	settings
not visible 25	instrument 30
password-protected 25	setup menu 42
programmable 25	shielding 15
parameters menu 30	snubber 14
parity bits 39	specifications 7
password-protected parameter 25	standards 4
port	status LEDs 17
assignment, flash driver 40	stop bits 39
flash driver assignment 40	suppression, interference 14
infra-red 38	system
RS-232 14, 38, 47	errors 45
RS-485 15, 38, 48	messages 44
power supply interruption 40	warnings 45
printer	6
data control 58	T
error messages 59	terminal designations 10
protocol 55	test menu 43
report types 55	timeout
printer types 55	mode 43
printouts	time 43
individual logs 56	tm/log menu 40
live data 56	TOTAL key 18
log report 57	•
types 56	${f U}$
product number codes 61	unit tag 21
programmable parameters 25	units
protocol	menu 30
communication 49	
Modbus RTU 49	${f V}$
printer 55	variable, default 17
pulse output 12	version, customer 62
pulse output 12	view data logs 19
R	
real-time clock 40	\mathbf{W}
rear panel 10	warnings 45
relay outputs 3	weekly logging 41
relays, alarm 36	
remote key input 35	\mathbf{Y}
RESET key 18	yearly logging 41
TENET INCY TO	